

Al in Education: Humanizing Technological Advancements

Creating a Better Learning Environment

THE 41ST ANNUAL CONFERENCE OF THE ARAB ORGANIZATION DATE : 15 December 2024 VENUE: National University for Science and Technology, Muscat, Oman.

By: Prof. Sr Ts. Dr. Adi Irfan Che Ani

To explore ways AI enhances and humanizes learning environment

The Need for Humanizing Al in Education

Personalized Learning Paths

Customizing learning to each student's pace and

style

Interactive Idea Generation

*****Claude

jenni
 Elicit
 Scite_

Adobe Express

🔉 postermywall

https://drive.google.com/file/d/1InvZO5VsOOC1pMDPAjZWm dYH4CrJnK7V/view?usp=sharing

Your AI Research Assistant

Get cited answers supported by real research

Create a literature	\triangleright
翁 Settings ① Sources	Use Table Mode

Create a literature review of weight loss related GLP-1 research

How to input humanize experience in Ai?

DESIGN FOR EMPATHY AND EMOTIONAL INTELLIGENCE

- Incorporate Emotional Recognition: Use Al algorithms that can detect and interpret emotions from facial expressions, voice tones, or written inputs to respond empathetically (Morana et al., 2020).
- Simulate Natural **Conversations: Train Al** with datasets that reflect human nuances. such as casual phrasing, politeness, and emotional cues, to make interactions feel natural (Momand et al., 2023).
- Contextual Understanding: Enable Al to consider the context of a learner's situation (e.g., stress levels, learning challenges) to offer tailored and supportive responses (García-Martínez et al., 2023).

 Adaptive Learning Paths: Develop algorithms that adjust to the user's progress, learning pace, and style to make education feel individualized (Gligorea et al., 2023).

FOCUS ON

PERSONALIZATION

- Dynamic Feedback: Provide feedback in a constructive and supportive tone. similar to how a teacher would encourage and guide a student (Xie et al., 2019).
- Cultural Sensitivity: Train AI to recognize and respect cultural differences, ensuring inclusive and respectful interactions (Holstein et al., 2019).

 Assistive Technologies: Incorporate tools like text-to-speech. speech-to-text, and screen readers to support learners with disabilities (Kazimzade et al... 2019).

ENHANCE

ACCESSIBILITY

- Language Localization: Support multiple languages and dialects for broader inclusivity and accessibility (Fan et al., 2020).
- Customizable Features: Allow users to modify AI settings (e.g., tone, pace, difficulty) to suit their comfort and needs (Jia et al., 2022).

BUILD TRUST THROUGH TRANSPARENCY

PROMOTE COLLABORATIVE LEARNING

- Explainable AI: Make decisions and recommendations understandable to users by explaining the rationale behind them (Mendes & Rios. 2023).
- Data Privacy and Ethics: Prioritize the ethical use of data, ensuring that users' privacy is protected and that data is used responsibly (Liao & Sundar, 2022).
- Virtual Peer Interaction: Simulate group discussions or collaborative tasks where AI moderates or participates as a peer (Chan & Tsi, 2023).
- Human-Al Collaboration: Allow AI to support teachers by automating repetitive tasks while leaving creative and relational responsibilities to humans (Holstein & Aleven, 2021).

• Use AI to simulate real-life scenarios or case studies. encouraging problemsolving, critical thinking, and emotional engagement (Mello et al., 2023).

INCORPORATE REAL-

WORLD EXAMPLES

 Leverage gamification to make learning experiences interactive. fun. and human-like (Long & Magerko, 2020).

Continuously improve AI by learning from user feedback and evolving human behaviors. ensuring the system remains relatable and effective (Zhai et al... 2021).

REGULARLY UPDATE AI

SYSTEMS

Enhancing Inclusivity Through AI

Equity in Learning Opportunities: Al as a tool to support diverse

AI as a tool to s learning needs

Al in Intelligent Tutoring Systems (ITS)

How ITS provides personalized guidance similar to a human tutor?

Real-Time Feedback and Continuous Assessment

Immediate insights into strengths and weaknesses

EXAMPLE

Automated grading and analytics that support formative assessment

Supporting Educators and Reducing Administrative Tasks

Data-Driven Insights for

• Helps teachers make informed instructional decisions

Promoting Emotional Intelligence and Social Skills

Simulations and VR

 AI tools that simulate real-world scenarios to teach empathy

Outcome:

• Students develop collaborative and social skills in safe environments

AI-Enabled Tools for Student Wellbeing

200

Mental Health Support

Outcomes:

• A supportive learning environment that considers emotional needs

Fostering Lifelong Learning

CONTINUOUS LEARNING

Al adapts as learners' needs evolve

promoting lifelong skills

EXAMPLE

AI-based platforms for skills development and career readiness

Case Studies or Success Stories

Highlight examples from

learning more personal and

Ethical Considerations in Al for Education

Privacy and Security

 Ensuring data protection and transparency

Trust in Technology

 Building student and parent confidence in AI

Challenges of Implementing Al in Education

Cost

Technical limitations

Resistance to change

The Future of Al in Education

EMERGING TRENDS • New developments like generative AI and realtime VR classrooms

VISION The potential for even more human-centered Al applications

Key Takeaways

AI AS A TOOL TO ENHANCE

NOT REPLACE

HUMAN CONNECTIONS IN EDUCATION

Thenk You

For Your Attention

REFERENCESS:

- Chan, C. K. Y., & Tsi, L. H. Y. (2023). The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? In C. K. Y. Chan & L. H. Y. Tsi, arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arXiv.2305.
- Fan, M., Antle, A. N., & Warren, J. L. (2020). Augmented Reality for Early Language Learning: A Systematic Review of Augmented Reality Application Design, Instructional Strategies, and Evaluation Outcomes [Review of Augmented Reality for Early Language Learning: A Systematic Review of Augmented Reality Application Design, Instructional Strategies, and Evaluation Outcomes]. Journal of Educational Computing Research, 58(6), 1059. SAGE Publishing. https://doi.org/10.1177/0735633120927489
- García-Martínez, I., Batanero, J. M. F., Cerero, J. F., & León, S. P. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. In I. García-Martínez, J. M. F. Batanero, J. F. Cerero, & S. P. León, Journal of New Approaches in Educational Research (Vol. 12, Issue 1, p. 171). University of Alicante. https://doi.org/10.7821/naer.2023.1.1240
- Gligorea, I., Cioca, M., Oancea, R., Gorski, A.-T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review (Review of Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review). Education Sciences, 13(12), 1216. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/educsci13121216
- Holstein, K., & Aleven, V. (2021). Designing for human-AI complementarity in K-12 education. In K. Holstein & V. Aleven, arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arXiv.2104.
- Holstein, K., McLaren, B. M., & Aleven, V. (2019). Designing for Complementarity: Teacher and Student Needs for Orchestration Support in Al-Enhanced Classrooms. In K. Holstein, B. M. McLaren, & V. Aleven, Lecture notes in computer science (p. 157). Springer Science+Business Media. https://doi.org/10.1007/978-3-030-23204-7_14
- Jia, F., Sun, D., Ma, Q., & Looi, C. (2022). Developing an AI-Based Learning System for L2 Learners' Authentic and Ubiquitous Learning in English Language. In F. Jia, D. Sun, Q. Ma, & C. Looi, Sustainability (Vol. 14, Issue 23, p. 15527). Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su142315527

- https://doi.org/10.1145/3313831.3376727

Kazimzade, G., Patzer, Y., & Pinkwart, N. (2019). Artificial Intelligence in Education Meets Inclusive Educational Technology-The Technical State-of-the-Art and Possible Directions. In G. Kazimzade, Y. Patzer, & N. Pinkwart, Perspectives on rethinking and reforming education (p. 61). Springer Nature. https://doi.org/10.1007/978-981-13-8161-4_4

Liao, Q. V., & Sundar, S. S. (2022). Designing for Responsible Trust in AI Systems: A Communication Perspective. In Q. V. Liao & S. S. Sundar, 2022 ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3531146.3533182

Long, D., & Magerko, B. (2020). What is Al Literacy? Competencies and Design Considerations.

Mendes, C. R. B., & Rios, T. N. (2023). Explainable Artificial Intelligence and Cybersecurity: A Systematic Literature Review. In C. R. B. Mendes & T. N. Rios, arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arXiv.2303.

Momand, Z., Chan, J. H., & Mongkolnam, P. (2023). Immersive Technologies in Virtual Companions: A Systematic Literature Review. In Z. Momand, J. H. Chan, & P. Mongkolnam, arXiv (Cornell University). Cornell University. https://doi.org/10.48550/arXiv.2309.

Morana, S., Pfeiffer, J., & Adam, M. T. P. (2020). User Assistance for Intelligent Systems. In S. Morana, J. Pfeiffer, & M. T. P. Adam, Business & Information Systems Engineering (Vol. 62, Issue 3, p. 189). Springer Nature. https://doi.org/10.1007/s12599-020-00640-5

Xie, H., Chu, H., Hwang, G., & Wang, C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017 [Review of Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017]. Computers & Education, 140, 103599. Elsevier BV. https://doi.org/10.1016/j.compedu.2019.103599

Zhai, X., Chu, X., Chai, C. S., Jong, M. S., Starčič, A. I., Spector, M., Liu, J., Jing, Y., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020 [Review of A Review of Artificial Intelligence (AI) in Education from 2010 to 2020]. Complexity, 2021, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2021/8812542